Pertidaksamaan linear adalah pertidaksamaan yang melibatkan variabel dengan pangkat satu. Dalam matematika, pertidaksamaan ini sering digunakan untuk memodelkan masalah dalam kehidupan sehari-hari dan mencari nilai-nilai yang memenuhi syarat. Dengan menggunakan metode grafik atau pemecahan aljabar, kita dapat menyelesaikan pertidaksamaan linear dengan efektif.
Penjelasan dan Jawaban
Pertidaksamaan linear adalah sebuah persamaan yang melibatkan variabel dengan pangkat yang paling tinggi adalah 1. Persamaan ini biasanya ditulis dalam bentuk ax + b < c atau ax + b > c, dimana a, b, dan c adalah bilangan real dengan a ≠0.
Langkah-langkah untuk memecahkan pertidaksamaan linear adalah sebagai berikut:
- Tentukan bentuk pertidaksamaan (kurang dari atau lebih dari).
- Ubah pertidaksamaan menjadi bentuk standar, yaitu ax + b < c atau ax + b > c.
- Tentukan apakah koefisien a positif atau negatif.
- Jika a positif:
- Selesaikan pertidaksamaan seperti menyelesaikan persamaan linear biasa.
- Note: Jika variabel ada pada kedua sisi pertidaksamaan (misal: ax + b < c + d), maka bisa digunakan hukum penambahan dan pengurangan serta peraturan kesamaan. Pastikan untuk memindahkan variabel ke satu sisi saja.
- Jika a negatif:
- Inversi pertidaksamaan (ubah < menjadi > atau sebaliknya).
- Selesaikan pertidaksamaan seperti menyelesaikan persamaan linear biasa.
- Note: Jika variabel ada pada kedua sisi pertidaksamaan (misal: ax + b > c + d), maka bisa digunakan hukum penambahan dan pengurangan serta peraturan kesamaan. Pastikan untuk memindahkan variabel ke satu sisi saja.
Kesimpulan
Dalam matematika, pertidaksamaan linear adalah persamaan yang melibatkan variabel dengan pangkat yang paling tinggi adalah 1. Pertidaksamaan linear ditulis dalam bentuk ax + b < c atau ax + b > c, dimana a, b, dan c adalah bilangan real dengan a ≠0. Untuk memecahkan pertidaksamaan linear, langkah-langkah yang perlu dilakukan adalah menentukan bentuk pertidaksamaan, mengubahnya menjadi bentuk standar, dan menyelesaikannya berdasarkan nilai koefisien a.
Leave a Reply